Chem. Ber. 119, 2731-2747 (1986)

Elementorganische Amin/Imin-Verbindungen, XXVII¹⁾

Palladium- und Platinkomplexe mit Chalkogenphosphorsäurediamid-Derivaten als Liganden

Otto J. Scherer*, Klaus Forstinger, Jürgen Kaub⁺⁾ und William S. Sheldrick⁺⁾

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Eingegangen am 24. März 1986

RR'NP(X) = NR (1), R = tBu, R' = SiMe₃; X = S, Se, addiert Wasser unter Bildung von (RHN)₂P(X)OR' (2), das seinerseits mit NaOH in die Salze Na[XOP(NHR)₂] (3) übergeführt werden kann. (Ph₃P)₂MO₂ und 2 bzw. (Ph₃P)₂MCl₂ (M = Pd, Pt) und 3 ergeben *cis*-[(Ph₃P)₂M{XP(O)(NHR)₂}] (4) und [(Ph₃P){(RHN)₂P(O)X}MXP(O)(NHR)NHR] (5). Die Umsetzung von 3 mit *trans*-[(CH₃CN)₂PdCl₂] (6) führt zu den Palladium-Mehrkernkomplexen (PdL₂)_n, L = SP(O)(NHR)₂, 7 (n = 3), 8 (n = 2). 5 (M = Pt, X = S, Se) und 7 wurden zusätzlich durch eine Röntgenstrukturanalyse charakterisiert.

Element-Organic Amine/Imine Compounds, XXVII¹⁾

Palladium and Platinum Complexes with Diamidochalkogenophosphoric Acid Derivatives as Ligands

RR'NP(X) = NR (1), R = tBu, R' = SiMe₃; X = S, Se, adds water with formation of $(RHN)_2P(X)OR'$ (2). 2 and NaOH afford the salts Na[XOP(NHR)₂] (3). $(Ph_3P)_2MO_2$ and 2 as well as $(Ph_3P)_2MCl_2$ (M = Pd, Pt) and 3 react with formation of cis-[$(Ph_3P)_2M-{XP(O)(NHR)_2}_2$] (4) and [$(Ph_3P){(RHN)_2P(O)X}MXP(O)(NHR)NHR$] (5). The interaction of 3 with trans-[$(CH_3CN)_2PdCl_2$] (6) gives the multinuclear palladium complexes $(PdL_2)_n$, L = SP(O)(NHR)₂, 7 (n = 3), 8 (n = 2). 5 (M = Pt, X = S, Se) and 7 have been characterized additionally by an X-ray structure analysis.

Die Ligandeneigenschaften der verzerrt tetraedrisch gebauten Anionen RR'P(X)Y⁻ (R = R' = z. B. Alkyl, Aryl, O-Alkyl; X = O, S, Se; Y = O, S, Se) sind eingehend untersucht²). Chalkogenphosphorsäurediamid-Derivate lassen sich nach den verschiedensten Methoden³ synthetisieren. Eine neue Synthesevariante⁴ bedient sich der Umsetzung von Methanol mit den Iminochalkogenphosphoranen RR'N-P(X)=NR (1), R = tBu, R' = SiMe₃; X = S, Se.

$(tBuHN)_2P(X)OSiMe_3$ (2) und $[(tBuHN)_2POX]Na$ (3); X = S, Se

Die $\sigma^3, \lambda^4(\lambda^5)$ -Phosphorverbindungen 1 (neueste theoretische Untersuchungen⁵⁾ zeigen, daß derartige Moleküle mit dreifach koordiniertem Phosphoratom am

^{*)} Röntgenstrukturanalyse.

[©] VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0909-2731 \$ 02.50/0

besten durch die "Ylid"-Grenzstruktur 1 beschrieben werden) addieren Wasser unter nahezu quantitativer Bildung der symmetrisch substituierten Bis(*tert*-butylamido)chalkogenphosphorsäure-O-(trimethylsilylester) 2.

2 bildet farblose, sublimierbare Kristalle, die im Falle von 2a einen an Hexamethyldisilathian (möglicherweise Spuren Verunreinigungen) erinnernden, unangenehmen Geruch aufweisen. Die hydrolyseempfindlichen Verbindungen sind in Dichlormethan und Chloroform sehr gut, in Ether und Pentan mäßig löslich. Ihre NMR-Daten können Tab. 1 entnommen werden.

In Acetonitril fein suspendiertes, trockenes NaOH spaltet unter $Me_3SiOSiMe_3$ -Bildung (entstanden nach: $2Me_3SiOH \rightarrow (Me_3Si)_2O + H_2O)$ in nahezu quantitativer Ausbeute die O-Si-Bindung von 2 unter Bildung der farblosen (3b ist gelegentlich durch Spuren roten Selens schwach rosa), hydrolyseempfindlichen Natriumsalze 3, die ihrerseits in halogenierten Kohlenwasserstoffen, Tetrahydrofuran und Aceton sehr gut, in Acetonitril und Ether mäßig löslich sind.

Im Falle der Selenverbindungen **2b**, **3b** stützen die ¹JPSe-Kopplungskonstanten (**2b**: 824, **3b**: 607 Hz, Tab. 1) die angegebenen Strukturen. Beim Übergang von **1b** (¹JPSe = 960 Hz⁶) nach **3b** verkleinert sich die ¹JPSe-Kopplungskonstante um 353 Hz; ein zu erwartender Trend⁷. Die Kristallstrukturanalyse⁸) von **2a** (wegen Zwillingsbildung ließ sie sich nur bis zu einem *R*-Wert von ca. 0.14 verfeinern) beweist zweifelsfrei die $P-O-SiMe_3$ -Gruppierung und schließt somit die bei **2** prinzipiell diskutierbare Isomerenform mit P=O-Bindung aus.

Vierringchelatkomplexe $[(Ph_3P){(tBuHN)_2P(O)X}MXP(O)(NHtBu)NHtBu] (5) (M = Pd, Pt; X = S, Se)$

Edukte für ihre Darstellung sind neben 2 und 3 die O_2 -Komplexe L_2MO_2 sowie trans-[(Ph₃P)₂PdCl₂] bzw. cis-[(Ph₃P)₂PtCl₂].

Die mit Pentan ausgefällten Platinkomplexe 4a, b sind an der Luft handhabbare gelbe (4a) bzw. orangefarbene (4b) Pulver, die in Dichlormethan sehr gut, in Benzol, Toluol, Acetonitril gut löslich sind. In Lösung liegen sie mit den Chelatkomplexen 5a, b im Gleichgewicht vor. Rührt man eine Lösung von 4a, b in Benzol oder Toluol mit S₈ (3% Überschuß) 24 h bei Raumtemperatur, dann läßt sich unter Oxidation des Ph₃P (= L) zum Ph₃PS (weniger koordinationsfähig) das Gleichgewicht quantitativ auf die Seite von 5a, b verschieben. Die Umsetzung von (Ph₃P)₂PdO₂ mit 2a, b (ca. 10% Ph₃PO – entstanden durch (Ph₃P)₂PdO₂-katalysierte Oxidation⁹ von Ph₃P – als Nebenprodukt) sowie die Reaktion der Natriumsalze 3a, b mit *trans*-[(Ph₃P)₂PdCl₂] führen ohne NMR-spektroskopisch nachweisbare Zwischenprodukte direkt zu 5c, d und Ph₃P, das – ohne vorhergehende Oxidation mit Schwefel – säulenchromatographisch abgetrennt werden kann. 5a-d bilden orangerote, wenig luftempfindliche Kristalle, die in Toluol, Benzol und Dichlormethan sehr gut, in Ether und Acetonitril mäßig und in Pentan schwer löslich sind. In Lösung sind – wie auch bei den Vorstufen – die Schwefelverbindungen 5a, c thermisch wesentlich stabiler als die Selenanaloga 5b, d.

NMR-Spektren

Die NMR-spektroskopischen Daten der Substanzklassen 2-5 sind in Tab. 1 zusammengestellt.

Die Existenz zweier NHtBu-Gruppen bei 2 ergibt sich aus der Triplettaufspaltung im ³¹P-¹H-gekoppelten Spektrum und dem Integrationsverhältnis (NH: NtBu $\approx 1:9$) im ¹H-NMR-Spektrum. Die ³¹P{¹H}-NMR-Signale der Natriumsalze 3 sind gegenüber den Edukten 2 geringfügig hochfeldverschoben (z. B. 3b: $\delta = 33.8$, 2b: $\delta = 42.6$). Eine Bindungsordnung < 2, > 1 (vgl. dazu die Untersuchungen an Selenophosphaten⁷) ergibt sich für 3b anhand der ¹J³¹P⁷⁷Se-Kopplungskonstante, welche mit 607 Hz um 217 Hz kleiner als die von 2b (Tab. 1) ist. Die Entstehung hochviskoser Lösungen, eine Signalverbreiterung der Amidprotonen im ¹H-NMR-Spektrum sowie die Verschiebung der NH-Valenzschwingung zu niedrigeren Wellenzahlen (z. B. 2b: v(NH) 3420 (w), 3b: 3320 (br) cm⁻¹) werden versuchsweise auf die Assoziation von 3a, b zu höher aggregierten Systemen mit NH···O- bzw. NH···S-Wasserstoffbrückenbindungen zurückgeführt (NH₄⁺[POS(NH₂)₂] vernetzt dreidimensional über NH···S-Wasserstoffbrücken¹⁰).

		. 5	Tab. 1. ¹ H is-[(Ph ₃ P)	1-, ¹³ C{ ¹ H}- 1 2Pt{XP(O)(h	und ³¹ P{ ¹ H}-NMR-D; VHtBu) ₂] (4) und [(P	tten der K h3P){(tBu	(omplexe (t) HN) ₂ P(O)X	BuHN) ₂ P(X }MXP(O)(1)OSiMe _s (2), Na[XOP(NHtBu) ₇] (3), <u>NHtBu)</u> NHtBu] (5), δ in ppm, <i>J</i> in Hz
, N	×	Σ	.0 10 3	¹ H-NMR ^{a)}		с . с	C{iH}-NM	R ^{a)}	³¹ P{ ¹ H}-NMR ^{a)}
			0 CH ₃ Si	0CH3C	HNO	0CH ₃ Si	o CH ₃ C	9CH3C	۵P
2a	S		0.54 (s)	1.32 (d) ⁴ JPH 0.7	2.56 (d) ² JPH 10	1.45 (s)	31.4 (s)	52.1 (s)	53.2 (s)
2b	Se		0.45 (s)	1.43 (s)	2.65 (d) ² JPH 12	2.00 (s)	32.1 (s)	53.4 (s)	42.6 (s) ¹ JPSe 824
За	S			1.42 (s)	3.1 (br) ^{b)}		31.0 (s)	53.0 (s)	49.1 (s)
3b	Š			1.40 (s)	3.2 (d) ² JPH 7		33.2 (s)	51.4 (s)	33.8 (s) ^{a)} ¹ J PSe 607
4 a ^{c,1}	S I			1.58 (s)	3.70 (d) ² JPH 6		31.8 (d) ³ JPC 4	51.8 (s)	18.7 (PPh3, AA'-Teil eines AA'MM'X-Spinsy- stems), ¹ JPtP 3196; 28.8 (MM'-Teil), ² JPtP 43
4 b ^{c,h}	Se .			1.30 (s)	3.70 (d) ² JPH 11		31.2 (s)	50.4 (s)	15.4 (PPh ₃ , AA'-Teil), ¹ JPtP 3185; 17.7 (MM'- Teil), ² JPtP 47, ¹ JPSe 465
5ach	S	Pt		1.40 (s) ^{a,HT)}	d)		c)	c)	12.2 (d. Ph ₁ P ₄ /TT), ¹ <i>J</i> PtP ₄ 3864. ³ <i>J</i> P ₄ P ₅ 7.5: 31.2
				1.00 (s) ^{a,TT)}	1.85 (d), ² JPH 11		31.6 (s) ⁸⁾	51.6 (s) ⁸⁾	(d, XP _B O), ² <i>J</i> PtP _B 90.4, ³ <i>J</i> P _B P _A 8, 40.3 (s,
				1.22 (s)	2.49 (d), ² JPH 8.5		32.1 (s) ⁸⁾	52.8 (s) ^{a)}	$MXP_{\rm c}N$, ² JPtP _c 252 (² JPtXP + ² JPtNP)
				1.29 (s) 1.72 (s) ⁱ⁾	3.48 (d), ⁻ ³ PtH 11 8.42 (m) ⁰ , ² J PtH 45		32.4 (s) ^{e/}		
5b ^{ch}	Se Se	Ł		1.36 (s) ^{a,HT)}	d)		e)	c)	10.3 (dd). ¹ JPtPa 3830. ³ JPaPa 12. ³ JPaPc 6: 15.9
				$1.20 (s)^{a,TT}$	2.12 (d), ² JPH 12		30.8 (s) ^{g)}	51.6 (s) ^{g)}	(d), ² \dot{J} PfP _B 100, ¹ J P _B Se 480, ³ J P _B P _A 12, ² J PtP _C
				1.27 (s)	2.65 (d), ² JPH 10		31.4 (s) ^{g)}	56.2 (s) ^{g)}	279, ¹ JPSe 430, ³ JP _c P _A 6
				1.31 (s) 1.81 (s) ¹⁾	3.88 (d), ² JPH 11 8.72 (m) ⁰ , ² JPtH 30				

						Tab. 1 (Fortsetzung	(1	
Nr.	×	M	δCH ₃ Si	¹ H-NMR ^{a)} § CH ₃ C	ΥN	¹³ C{ ¹ H}-NM	R ^{a)} 8CH ₃ C	³¹ P{ ¹ H}-NMR ^{a)} 8 P
5c°	s	Pd		1.39 (s) ^{4,HT)} 1.00 (s) ^{4,TT)} 1.24 (s) 1.26 (s)	2.5–4.3 (br) 2.6–4.3 (br) 1.86 (d), ² JPH 12 2.56 (d), ² JPH 8 3.56 (d), ² JPH 12	32.4 (d) ^{HTI} ³ JP _B C 5 31.9 (s) ⁶¹ 32.0 (s) ⁶¹	53.8 (s) ^{l)} 54.1 (s) ⁸¹ 54.4 (s) ⁸¹ 59.3 (s) ⁸¹	35.3 (d, Ph ₃ P _A /TT), ³ JP _A P _B 5.2; 33.6 (d), ³ JP _B P _A 6.2, 37.1 (s)
Sd ^{c)}	Se	Pd		1.68 (s) ¹⁰ 1.40 (s) ^{a,HT} 1.12 (s) ^{a,TT} 1.18 (s) 1.23 (s) 1.67 (s) ¹⁰	7.9 (m) ^{b4)} 3.5-4.5 (br) 2.29 (d), ² /PH 12 2.75 (d), ² /PH 11 3.88 (d), ² /PH 11 8.14 (m) ^{b4)}	31.7 (s) ^{HT} 30.8 (s) ^B 30.9 (s) ^B 31.5 (s) ^B	53.6 (s) 52.0 (s) ^{g)} 52.1 (s) ^{g)}	35.3 (dd, Ph ₃ P _A /TT), ³ JP _A P _B 12.5, ³ JP _A P _C 6.1; 22.1 (d), ¹ JP _B Se 495, ³ JP _B P _A 12.5; 19.7 (d), ¹ JP _C Se 450, ³ JP _C P _A 6.1
^{a)} 2a 373 J Signa CDC CDC Sc mi 3862, für m	the sit CH sit c	A CD C C C C C C C C C C C C C C C C C C	nzol, 2b, 20, 2b, $O(3)$, $O($	3 und 4 in C K. 5a-d-T Whrt ⁰ N. /CH ₂ (2) 20 ?{[H]-NMR ?{[H]-NMR ?{[H]-NMR (H]-NMR (5 5a,1 d) 254, ² /PtP NHtBu.	 CDCl₃ bei 293 K, 3b: CDCl₃ bei 293 K, 3b: ieftemperatur(TT)-Spicient auffindbar. – ⁶ K), 5d CDCl₃ (223 C) 233 K. 4a: 20.7 (tt) (endständiger Ligan 	³¹ P in CH ₃ CN(C ₃ D ₆ C ektrum, CD ₂ Cl ₃ , 5a: 2 Wegen teilweiser Zerst K, nicht alle gefordert uenz 21.4 MHz bei der uenz 21.4 MHz bei der $(^{1}JPtP 3196, ^{2}JPtP 4)$ 1) 89. 5b: -6.2 (ddd), ¹ J	-Kapillare) -Kapillare) -Kapillare) -Kapillare) -Kapillare) 	, 5a, b [D ₈]Toluol, Hochtemperatur(HT)-Spektrum, 233 K, 5c, d: 193 K. $-^{50}$ Breites Signal. $-^{60}$ C ₆ H ₅ 373 K nicht gemessen. $-^{0}$ C ₇ D ₈ (293 K). $-^{20}$ Sa, b beobachtet, möglicherweise Signalüberlagerung (bei e, die der Protonenresonanz des TMS von 100 MHz 5.3 (tt), ¹ JPtP 3185, ² JPtP 47. 5a: 236 (ddd), ¹ JPtP JPtP 279, ² JPtP 100. $-^{50}$ Versuchsweise Zuordnung

Die bei 4 ebenfalls denkbare *trans*-Struktur läßt sich ³¹P-NMR-spektroskopisch (es wären zwei Tripletts zu erwarten) ausschließen. Die Zuordnung der Ph₃P-Gruppen zum A-Teil eines AA'MM'X-Spinsystems wird durch einen Vergleich mit (Ph₃P)₂PtS₂CNCMe₃ ($\delta P_A = 17.2$, ¹JPtP = 3168 Hz; $\delta P_B = 16.7$, ¹JPtP = 3205 Hz¹¹) erhärtet. Die ¹JPSe-Kopplung von 465 Hz liegt bei 4b im Erwartungsbereich für P-Se-Einfachbindungen⁷).

Die Chelatkomplexe 5 weisen dynamisches Verhalten auf. Temperaturabhängige NMR-Studien (vor allem 'H- und ³¹P-NMR) zeigen, daß bei Raumtemperatur durch einen raschen, intramolekularen (durch Verdünnungsexperimente bewiesen) Austausch alle NHtBu-Gruppen gleich werden. Der Ringschluß des Chelatliganden bewirkt zum einen die asymmetrische Koordination des Zentralatoms sowie die Bildung eines Chiralitätszentrums am Phosphor- bzw. Stickstoffatom des MXPN-Vierringes. Aufgrund der unterschiedlichen Umgebung der NHtBu-Reste (vgl. dazu Formelbild 5, Seite 2733) des Chelatliganden sowie der Nachbarschaft des prochiralen, endständigen (tBuHN)₂P(O)X-Liganden zu beiden Chiralitätszentren findet man im ¹H-NMR-Spektrum bei tiefen Temperaturen die zu erwartenden vier Singuletts für die tert-Butyl- sowie NH-Protonen. Auffallend ist die starke Tieffeldverschiebung (Bereich: ca. 8-9 ppm) des metallkoordinierten NH-Signals (vgl. dazu Lit.¹²), das bei den Platinkomplexen 5a, b noch zusätzlich die zu erwartende PtNH-Kopplung (5a: 45, 5b: 30 Hz, Tab. 1) aufweist. Weiterhin bemerkenswert ist das Anwachsen von ²JPtP bei der Chelatringbildung (z. B. 4a: 43, 5a: 252 Hz); Werte, die sich nur unwesentlich von denen des [Pt(S₂PR₂)₂-(PPh₃)], $R = CH_3$, $C_6H_5^{(13)}$, unterscheiden. Spektroskopische Hinweise auf die trans-Struktur von 5a, b erhält man aus der Größe der ¹JPtP-Kopplung, welche – wie erwartet - von 3196 bei 4a bzw. 3185 Hz (4b) (S, Se in trans-Position zu PPh₃) auf 3864 (5a) bzw. 3830 (5b) ansteigt, was dem geringeren trans-Einfluß der NHtBu- gegenüber der XP(O)(NHtBu)2-Gruppe entspricht. Den unterschiedlichen trans-Einfluß von S(Se) < P veranschaulicht der Anstieg von ²JPtP (endständig) auf mehr als das doppelte (z. B. 4a: 43, 5a: 90.4 Hz, Tab. 1).

Die für die Platinkomplexe **5a**, **b** aus NMR-spektroskopischen Daten ableitbare trans-Struktur konnte zusätzlich durch Röntgenstrukturanalyse (siehe Seite 2737) bewiesen werden. Für die Palladiumkomplexe **5c**, **d** kann aufgrund der guten Übereinstimmung aller spektroskopischen Daten mit denen von **5a**, **b** eine dazu analoge Struktur vorgeschlagen werden.

Stereochemie

Legt man die absolute Konfiguration der beiden Chiralitätszentren (Ring-Nund -P-Atom) von 5 gemäß der Cahn-, Ingold- und Prelog-Sequenzregel (vgl. dazu Lit.¹⁾) fest, so erkennt man zwei Enantiomerenpaare, die zueinander jeweils diastereomer sind. In Lösung wird NMR-spektroskopisch ausschließlich ein Enantiomerenpaar beobachtet. Modellbetrachtungen zeigen eine starke sterische Hinderung der tert-Butyl-Gruppen beim Enantiomerenpaar P(S)N(R)/P(R)N(S); ein Effekt, der offensichtlich ausreicht, um dessen Konzentration gegenüber den auch röntgenstrukturanalytisch gefundenen Diastereomeren mit der Konfiguration P(R)N(R)/P(S)N(S) unter die NMR-Nachweisgrenze absinken zu lassen.

Kristall- und Molekülstruktur der Chelatkomplexe 5a und 5b*)

Die Atomabstände und Bindungswinkel sind in Tabelle 2, die Atomkoordinaten und Temperaturfaktoren in den Tabellen 3, 4 zusammengefaßt. Die Molekülstruktur mit den zugehörigen Atomnumerierungen ist beispielhaft für 5a in Abb. 1 aufgezeigt.

Abb. 1. Molekülstruktur von 5a mit Atomnumerierung

Abb. 1 gibt die P(R)N(R)-Form von **5a** (**5b** ist isostrukturell dazu) wieder. Charakteristisches Strukturmerkmal sind der einzähnig endständige sowie zweizähnige Chalkogenphosphorsäurediamid-Ligand mit *trans*-Anordnung der S-Atome (S1/S3). Die Koordinationsumgebung am Platin (Winkelsumme **5a**: 360.4°; **5b**: 360.1°) ist erwartungsgemäß verzerrt quadratisch planar. Die Pt-Chalkogen-Abstände (Pt-S 234.1(3), 233.8(4); Pt-Se 247.4(1), 244.1(1) pm) sind in guter Übereinstimmung mit den z. B. beim Pt[S₂CN(iBu)₂]₂(PMe₂Ph)₂^{14a}) bzw. Pt-[Se₂CN(iBu)₂]₂^{14b} gefundenen Werten. Dem geringen *trans*-Einfluß des koordinierten Stickstoffatoms (N4) entsprechend beträgt der Pt1 – P2-Abstand 222.5(2) (**5a**) bzw. 223.2(3) pm (**5b**); ein nahezu übereinstimmender Wert von 222.8(6) pm wurde beim *cis*-[(Ph₃P)₂PtI(CH₂I)]¹⁵ für Pt-P *trans* zum I-Liganden gefunden. Bei beiden Komplexen ist der P-S- bzw. P-Se-Abstand (**5a**: P3-S3 205.0(6), **5b**: P3-Se3 219.9(3) pm) im Ring geringfügig kürzer als die exoständigen Werte P1-S1 bzw. P1-Se1 (206.7(5)/222.2(3) pm); sie liegen im Erwartungsbereich (ausführliche Vergleichsabstände finden sich in Lit.¹⁶).

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51910, der Autoren und des Zeitschriftenzitats angefordert werden.

-		/• · /)		,		,	,
a) Bindu	ngsabstände	(pm)					
		8				20	
Pt1-51	234.1(3)	Pt1-53 23	3.8(4)	Pt1-Se1	247.4(1)	Pt1-Se3	244.1(1)
Pt1-P2	222.5(2)	Pt1-N4 21	3.2(10)	Pt1→P2	223.2(3)	Pt1-N4	216.8(7)
P3-53	205.0(6)	P3N4 17	5.8(11)	P3-Se3	219.9(3)	P3-N4	172.7(8)
P1-51	206.7(5)	P3-N3 16	5.1(11)	P1-Se1	222.2(3)	P3-N3	162.4(9)
P1-N1	166.2(11)	P1-N2 16	3.8(10)	P1-N1	166.0(8)	P1-N2	164.8(8)
P1-01	149.6(9)	P3-03 14	6.7(9)	P1-01	149.3(6)	P3-03	146.9(7)
P2-C21	182.5(14)	P2-C31 18	3.5(13)	P2-C21	183.6(10)	P2-C31	183.5(13)
P2-C41	183.3(11)	N1-C11 14	9.4(19)	P2-C41	182.2(10)	N1-C11	152.7(12)
N2-C15	149.2(17)	N3-C51 15	2.7(19)	N2-C15	151.2(13)	N3-C51	153.2(14)
N4-C55	153.4(16)			N4-C55	157.8(13)		
b) Bindu	ngswinkel (°	')					
		8				b	
51-Pt1-5	3 168.5(2)) S1-Pt1-P2	91.9(1)	Se1-Pt1-Se3	169.00(4)	Se1-Pt1-P2	89.70(8)
P2-Pt1-5	3 95.4(1)) 51-Pt1-N4	98.4(3)	P2-Pt1-Se3	95.17(B)	Se1-Pt1-N4	97.7(2)
53-Pt1-N	4 78.3(3)) P2-Pt1-N4	173.0(3)	Se3-Pt-N4	78.1(2)	P2-Pt1-N4	173.1(2)
Pt1-53-P	3 B2.5(1)) 53-P3-N4	95.5(4)	Pt1-Se3-P3	7 9.38 (8)	Se3-P3-N4	94.9(3)
53-P3-N3	114.3(5)) N3-P3-N4	97.9(5)	Se3-P3-N3	114.7(4)	N3-P3-N4	99.4(4)
03-P3-N3	113.4(6)	03-P3-N4	119.2(5)	03-P3-N3	114.6(4)	03-P3-N4	117.5(4)
03-P3-53	114.5(4)) Pt1-N4-P3	96.0(5)	03-P3-Se3	113.5(3)	Pt1-N4-P3	98.7(4)
Pt1-N4-C	55 119.4(8)) P3-N4-C55	114.3(7)	Pt1-N4-C55	120.2(6)	P3-N4-C55	115.6(6)
Pt1-S1-P	1 106.1(2)) S1-P1-N1	102.9(4)	Pt1-Se1-P1	103.20(8)	Se1-P1-N1	109.1(3)
51-P1-N2	110.2(4)) N1-P1-N2	104.7(5)	Se1-P1-N2	102.6(3)	N1-P1-N2	104.2(4)
S1-P1-C1	1 112.2(4)) N1-P1-C11	114.6(5)	Se1-P1-C11	111.0(3)	N1-P1-C11	113.7(4)
N2-P1-C1	1 111.7(5)) Pt1-P2-C2	1 116.9(4)	N2-P1-C11	115.4(4)	Pt1-P2-C21	114.0(3)
Pt1-P2-C	31 113.9(4)) Pt1-P2-C4	1 113.9(4)	Pt1-P2-C31	113.6(4)	Pt1-P2-C41	117.4(4)
C21-P2-C	31 102.2(6)) C21-P2-C4	1 104.1(6)	C21-P2-C31	105.0(4)	C21-P2-C41	105.2(4)
C31-P2-C	41 104.3(5)) P1-N1-C11	126.3(9)	C31-P2-C41	99.9(4)	P1-N1-C11	129.1(6)
P1-N2-C1	5 130.1(8)) P3 -N3- C51	123.6(9)	P1-N2-C15	125.1(7)	P3-N3-C51	122.8(8)

Tab. 2. Ausgewählte Bindungsabstände und -winkel von $[(Ph_3P)_{(tBuHN)_2P(O)X}PtXP(O)(NHtBu)NHtBu]$ (5a, X = S; 5b: X = Se)

Erwartungsgemäß ist in beiden Fällen der P3-N4-Abstand (**5a**: 175.8(11), **5b**: 172.7(8) pm) aufgrund der zusätzlichen $N \rightarrow Pt$ -Bindung deutlich länger als die "endständigen" Abstände P3-N3, P1-N1 und P1-N2 (**5a**: 166.1(11), 166.2(11), 163.8(10); **5b**: 162.4(9), 166.0(8), 164.8(8) pm).

Der Winkel zwischen den Ebenen Pt1S3N4/S3P3N4 und Pt1Se3N4/Se3P3N4 beträgt bei 5a 150.6°, bei 5b 148.7°.

Palladium(II)-Mehrkernkomplexe mit Chalkogenphosphorsäurediamid-Liganden

 $Pd(SR)_2$ -Verbindungen sind vielfach hochassoziierte Komplexe^{17a}; $Pd(SC_3H_7)_2$ ist hexamer mit gefaltetem Palladium-Sechsring^{17b}. Aus K₂[PdCl₄] und 2-Ami-

.4 9 2 .		Q	
and and	(_ ^a)		
n n n n	ē		
hulad	B	<u> </u>	
티 I I I I			
at at			
aper 10		9819192999142092999999140041004000086000000000	
<u>∴ 5-5</u>	2		
laic, C	~	Û	
g⊢ă		E	
ta			
na S	۵		
E S E	2	80000000000000000000000000000000000000	
0 0 L		, , , , , , , , , , , , , , , , , , ,	
S S C			
E S I			
c to	e /	00444799991486704887809019799999994489998	
() ()	×.		1
γe.γ	-	.e	
	E O H		
_Åale	Ι.Υ		
$H > \bigcirc$		u P	
			.
<u>, </u>			9 4 4 8 +
N S	11		12 in 16
- 5	1		2 Page 1
Pa X		74711221224727200040000400044200047440000000000	
э.С	^		s + S Hie
<u>,</u> , € 5	1	2	1 <u>A</u> _ A A A A A A A A A A A A A A A A A A
<u>ت</u> ة × 2		ONN446444444AANNNNNNNNNNNNNNNNNNNNNNNNNN	R Palag
1 2		04/04/00000000000000000000000000000000	H.S.H.
ī		20000000000000000000000000000000000000	م ټو :
»			
p i e		man	
la lo	1		LA Har S
별폭물	A		
2 E B	1	20000000000000000000000000000000000000	B'2 C'B
artio	1 1		0 10 4 2
A E S		*	
E S H	1 1		이 쓰는 날 끝수
¥EE	2	19489442861188212222000000000000000000000040000044644	1 H S B S
_ ē	×	NHWNH4WNHN4W0000000000000000000000000000	
4.	1_1		
ക്ക്	Lo L		Z Z H A Z
Lo a	Ā	TUNET COLEX COOLOGOOODOOODOOODOOOOOOOOOOOOOOOOOOOOOO	່ ສຸຊັສ <i>ຫຼື</i> ອ
			• • •
9.6			5 2 3
.s -	1 1		12 in G
o d		-NNNNNNN4999944 000M4444444499994 04999404040404949	³ ¹ ¹ ¹ ²
ě >	1_1	001800990/80094000180910980900880/0897/99999911144/99 001800990/8094090180919949994490088088088000811040044	
2 ° ° °	[]		e e e e
€, <u>,,</u> 8			alex -
2 × <u>ii</u>			T D L
Å.∼×		00000011000004000000000000000000000000	
ુર ર	N	01100000144014411111188880/2800/280011111100111188882/20000000000	n of a
a a š			S 2 3 4
ð s é			
da ta la	1		1 Z T 1 Z
at ak di		20000000000000000000000000000000000000	L SEL
5172	1		33 lie
j t c			
it i i i	1 1		Sin d
<u>i</u> di ji		V04m041HVH0HVV4000H0044400HN0M00HM000VH00HM480	<u>□</u> ≞Ę"
¥ a a	2	01000000000000000000000000000000000000	E H S
Te	*		H 2
() o			l i i i i i
ਚੋਂ ਦੂੱ	L d	1 0 0 0 0 0 0 0 0 0 0 0 0 0	Z 🗄 🗄 🖉
		TNTTNTZGZGGGZGGGGGGGGGGGGGGGGGGGGGGGGGG	ട്ട്ട് ഇത

Elementorganische Amin/Imin-Verbindungen, XXVII

noethanthiol (AETH) entsteht der Dreikernkomplex $[Pd_3(AET)_4]Cl_2^{18a}$, dessen Nickel-Analogon ein lineares Ni-Dreikerngerüst mit kurzen Ni…Ni-Abständen aufweist^{18b)} (vgl. dazu auch Lit.¹⁹⁾). Röntgenstrukturanalytische Untersuchungen an $[Pd_3(\mu-SC_2H_5)_3(S_2CSC_2H_5)_3]^{20a)}$ und $[Pd(2,2'-dimercaptodiethylsulfid)_2]_3^{20b)}$ ergeben für das Metallgrundgerüst eine verzerrte Dreiecksanordnung.

Rührt man eine Suspension von *trans*-[(CH₃CN)₂PdCl₂] (6) in Acetonitril und 2 mol 3a, dann bilden sich nach wenigen Stunden die Palladium-Mehrkernkomplexe 7 und 8.

7, das röntgenstrukturanalytisch charakterisiert wurde, liegt in Lösung mit dem Zweikernkomplex 8 im Gleichgewicht vor. Dieses Gleichgewichtsgemisch ist in Pentan mäßig, in Ether, Acetonitril und Toluol gut und in Dichlormethan sehr gut löslich. Beim Erwärmen in Acetonitril auf ca. 70 °C beobachtet man eine kontinuierliche Farbänderung von anfangs Tiefrot nach Orange. Aus dieser Lösung kristallisiert beim langsamen Abkühlen rotes 7 aus, das – erneut in Acetonitril gelöst – wiederum das Gleichgewichtsgemisch 7/8 bildet.

Das für die Komplexe 7 und 8 gewählte Formelbild berücksichtigt weder die räumliche Anordnung der Brückenliganden noch die Konfiguration an den Chiralitätszentren (P- und koordinierte N-Atome). Die an die pyramidalen S-Atome gebundenen OP(NHR)₂-Reste können sowohl *cis* als auch *trans* zueinander angeordnet sein (bei Nichtplanarität des Vierringes müssen für die *cis*-Form noch zusätzlich *syn-exo/endo*-Konformere diskutiert werden). Weiterhin denkbar wäre eine "*cis*"-Anordnung der beiden S- und N-Atome in den äußeren Vierringen von 7 und 8. Aufgrund der vier Chiralitätszentren (2 × N- und 2 × P-Atom) ergeben sich z. B. für 8 (*trans*-Anordnung der OP(NHR)₂-Reste) sechzehn mögliche Stereoisomere, die in acht Enantiomerenpaaren vorliegen (vgl. dazu die Diskussion dieser Problematik bei der Substanzklasse 5, S. 2736).

NMR-Spektren

Die NMR-spektroskopischen Daten der Palladium-Mehrkernkomplexe 7 und 8 sind in Tab. 6 zusammengestellt.

Tab. 6. ¹H- und ³¹P{¹H}-NMR-Daten der Mehrkernkomplexe [Pd{SP(O)(NHtBu)₂}₂]_n, n = 3 (7), n = 2 (8); δ in ppm, J in Hz

Nr.	¹ H-NMR [#] δCH ₃ C	δNH		³¹ P{ ¹ H}-NMR ^{a)} δP
7	1.27 (s), 1.28 (s), 1.43 (s) 1.59 (s), 1.60 (s), 1.78 (s)	3.09 (d) 3.29 (d) 3.38 (d) 4.14 (d) 4.72 (d) 6.93 (br) ^{b)}	${}^{2}J_{\rm PH}$ 8.1 ${}^{2}J_{\rm PH}$ 9.6 ${}^{2}J_{\rm PH}$ 12.1 ${}^{2}J_{\rm PH}$ 11.6 ${}^{2}J_{\rm PH}$ 13.7	42.5 (s) (Ring-P) 26.1 (s) 18.7 (s) (<i>exo</i> -P)
8	1.28 (s), 1.40 (s) 1.56 (s), 1.63 (s)	2.89 (d) 3.41 (d) 3.99 (d) 5.26 (br) ^{b)}	² J _{PH} 10.0 ² J _{PH} 11.8 ² J _{PH} 11.0	43.8 (s) (Ring-P) 21.8 (s) (exo-P)

^{a)} In CDCl₃ (293 K), 7 und 8 wurden als Gleichgewichtsgemisch vermessen. ¹³C{¹H}-NMR-Daten werden nicht aufgeführt, da nur breite Signale ohne Feinaufspaltung bei $\delta = ca. 30$ bzw. 50 ppm aufzufinden waren. $-\frac{b}{2}J_{PH}$ nicht aufgelöst.

Für den Dreikernkomplex 7 findet man sechs Singuletts für die *tert*-Butyl-Protonen sowie fünf Dubletts und ein breites Signal (Ring-N-Atom) für die NH-Protonen; letzteres tritt wieder charakteristisch tieffeldverschoben auf. Aus der Anzahl der beobachteten Signale kann auf eine symmetrische Molekülstruktur geschlossen werden. Aufgrund der Chiralitätszentren werden die zu erwartenden CMe₃-Signale der OP(NHR)₂-Reste zusätzlich verdoppelt (das gleiche gilt für die NH-Signale).

Temperaturabhängige ¹H- und ³¹P{¹H}-NMR-Studien sowie Verdünnungsexperimente beweisen das in Lösung vorliegende Gleichgewicht aus 7 und 8. Bei geringer Konzentration (ca. 10^{-3} molar bezüglich einer monomeren PdL₂-Einheit, $L = SP(O)(NHR)_2)$ und hoher Temperatur (ca. $80^{\circ}C$) findet man ein Verhältnis von ca. 2:1 für 8:7. Ein monomerer Komplex PdL₂ läßt sich NMR-spektroskopisch ausschließen.

Im ³¹P{¹H}-NMR-Spektrum des bei 293 K vermessenen Gleichgewichtsgemisches (ca. 70% 7 sowie 30% 8) findet man zusätzlich zu den zu erwartenden fünf Signalen (Tab. 6) nochmals fünf Signale von gerade noch meßbarer Intensität (Hoch- und Tieftemperaturmessungen ergaben keine Anreicherung). Temperaturabhängige Messungen (ca. -60 bis +60°C) zeigen bis auf eine Verschiebung der Gleichgewichtszusammensetzung keine Signalveränderung. Dies weist darauf hin, daß 7 und 8 in Lösung entweder in einer Diastereomerenform (vorausgesetzt, die einzelnen Diastereomeren sind NMR-spektroskopisch genügend unterscheidbar) vorliegen, oder daß Isomerisierungen zu schnell in bezug auf die NMR-Zeitskala ablaufen. Für 7 und 8 wird in Analogie zu der bei 7 im Kristall gefundenen Struktur eine "*trans*"-Stellung der Chelatliganden vorgeschlagen. Aussagen über die geometrische Anordnung der Ringsubstituenten können nicht getroffen werden.

Kristall- und Molekülstruktur des Palladium-Dreikernkomplexes 7*)

Die Atomabstände und Bindungswinkel sind in Tabelle 7, die Atomkoordinaten und Temperaturfaktoren in Tabelle 5 zusammengefaßt. Die Molekülstruktur mit den zugehörigen Atomnumerierungen ist in Abb. 2 aufgezeigt.

Abb. 2. Molekülstruktur von 7 mit Atomnumerierung

Der vermessene Kristall von 7 weist P3(S), N31(S), P3'(S), N31'(S)-Konfiguration auf. Zentrales Strukturelement ist eine nahezu lineare Pd-Dreikernkette $(Pd2 - Pd1 - Pd2' = 173.2^{\circ})$ mit trans-ständigen Thiophosphorsäurediamid-Chelatliganden an Pd2(Pd2') sowie jeweils zwei über Schwefel die Palladiumatome (Pd1,Pd2,Pd2') überbrückende SP(O)(NHtBu)2-Liganden. Während die beiden äußeren Pd-Atome (Pd2,Pd2') eine planare Umgebung (Winkelsumme 360.7°) aufweisen, findet man für Pd1 eine tetraedrische Verzerrung (dadurch ergibt sich eine verminderte sterische Wechselwirkung der an S1 und S2 in trans(anti)-Stellung befindlichen Substituenten), welche wahrscheinlich auf sterische Effekte zurückzuführen ist. Der Winkel zwischen den Ebenen S1Pd1S2' und S2Pd1S1' (Ebenen 4 und 5, Tab. 7) beträgt 32.1°. Die beiden Vierringe Pd1S1Pd2S2' und Pd1S2Pd2'S1' sind vergleichsweise schwach abgeknickt (Winkel zwischen den 166.4°). Beim Dimeren $[Pd_2]\mu$ -Ebenen S1Pd2S2' und S1Pd1S2' = $SCMe_{3}_{2} \{S_{2}CSCMe_{3}_{2}\}^{20a}$ findet man 131.8° (Pd···Pd = 316.2(1) pm). Der Pd…Pd-Abstand (Pd1…Pd2) von 350.1(0) pm stimmt fast überein mit dem beim $[(Ph_3P)(C_6F_5S)(\mu-SC_6F_5)Pd]_2$ (Pd···Pd ≈ 354 pm, planarer Pd₂S₂-Vierring) gefundenen Wert^{20a)}. Im Gegensatz zu den Pd-S-Abständen (230.1(2)-233.7(2) pm) weisen die endständig-verbrückenden Thiophosphorsäurediamid- (P1-S2)213.6(2), P2-S1 213.8(3) pm) gegenüber den Chelat-Liganden (P3-S3 203.2(3) pm) deutlich längere P-S-Abstände auf.

Neben schwachen S \cdots S-Wechselwirkungen (S1 \cdots S2' 308.0 pm) sind aufgrund der kurzen O2 \cdots N11- (284.0 pm) und O1 \cdots N31'- (286.4 pm) Abstände Wasser-

^{*)} Siehe Seite 2737.

a) Rindung	nabetände (n							
a) produg	saustande (p	m <i>)</i>						
Pd1Pd2	350.1(0)	Pd1-51	233.7(2)	Pd2-S1	232.3(1)	Pd1-52	232.8(2)
Pd2+53	230.1(2)	Pd2-N31	210.2(5))	S1-P2	213.8(3)	S2-P1	213.6(2)
53-P3	203.2(3)	P1-01	148.0(4))	P2-02	146.7(5)	P3-03	146.6(5)
P1-N11	167.3(6)	P1-N12	164.6(5))	P2-N21	165.1(6)	P2-N22	166.2(6)
P3-N31	177.8(6)	P3-N32	163.8(6)	N11-C11	150.2(8)	N12-C15	152.4(9)
N21-C21	152.4(9)	N22-C25	152.4(1	1)	N31-C31	153.8(9)	N32-C35	152.9(9)
02N11	284.0 ^{a)}	01N31'	286.4 ^{a)}		\$152'	308.0 ^{а)} . а	a) berech	net.
b) Bindungs	swinkel (°)							
\$1-Pd1-52	101.07(6)	S1-Pd2	2-53 9	8.05	(7)	51-Pd2-N31	175.	5(2)
S3-Pd2-N31	80.1(2)	Pd1-51	-Pd2 9	97.38	(6)	Pd1-51-P2	109.9	₹(1)
Pd2-51-P2	102.70(9)	Pd1-52	2-P1 12	20.74	(9)	Pd2-53-P3	83.1	1(9)
S2-P1-01	110.3(2)	52-P1-	N11 9	07 .3 (2)	52-P1-N12	109.0)(2)
01-P1-N11	117.2(3)	01-P1-	N12 11	3.7(3)	N11-P1-N12	108.0)(3)
S1-P2-02	109.8(3)	S1-P2-	N21 10	1.9(2)	51-P2-N22	107.0	3)
02-P2-N21	119.3(4)	02-P2-	N22 11	2.0(3)	N21-P2-N22	105.9	9(3)
\$3-P3-03	119.0(2)	S3-P3-	N31 9	6.0(2)	S3-P3-N32	107.2	2(2)
03-P3-N31	113.3(3)	03-P3-	N32 11	4.3(3)	N31-P3-N32	104.8	3(3)
P1-N11-C11	126.0(5)	P1-N12	-C15 12	6.4(5)	P2-N21-C21	124.4	4(6)
P2-N22-C25	125.4(5)	Pd2~N3	91-P3 9	95.6(2)	Pd2-N31-C3	1 117.1	(4)
P3-N31-C31	118.8(4)	P3-N32	-C35 12	6.5(5)	52' -Pd2-N3	1 100.7	,a)
\$1-Pd2-\$2'	82.0 ^{a)}	\$1-Pd1	-S2' 6	2.5 ^a)	a) berechn	et.	
c) Winkel a	wischen defi	inierten Eb	ienen (°)					
Ebene	definierende	Atome	_	·	1	2	3	•
1	53 Pd2	N31 .		2	24.48			

Tab. 7. Ausgewählte Bindungsabstände und -winkel von 7

Ebene	defin	nierend	e Atome			1	2	3	4	
1	53	Pd2	N31		2	24.48				
2	S3	P3	N31		3	7.24	26.01			
3	51	Pd2	S2 '	1	4	15.97	39.29	13.55		
4	51	Pd1	52 '		5	39.07	47.86	31.84	32.11	
5	52	Pd1	S1 '							

stoffbrückenbindungen vom Typ $P-N-H\cdots O=P$ im festen Zustand diskutierbar. Wie bei **5a** und **5b** findet man auch bei **7** eine deutliche Verlängerung des P3-N31-Abstandes (177.8(6) pm, Pd-koordiniertes N-Atom) gegenüber den exocyclischen Werten (P1-N11, P1-N12, P2-N22, Mittelwert 165.8 pm). Alle weiteren Abstände und Winkel weisen keine Besonderheiten auf.

Dem Verband der Chemischen Industrie danken wir für die finanzielle Unterstützung.

Experimenteller Teil

Sämtliche Untersuchungen (in einem Schlenk-Rohr oder Zentrifugenglas) wurden in einer Argon-Schutzgasatmosphäre unter Verwendung absol. Lösungsmittel durchgeführt. ¹H-, ¹³C{¹H}-, ³¹P{¹H}-, ¹⁹⁵Pt{¹H}- und temperaturabhängige Spektren: FT-Gerät WP 200, Firma Bruker. Hochfeldverschiebung bedeutet negativer Wert. Die Kopplungskonstanten sind in Hertz ohne Berücksichtigung der absoluten Vorzeichen angegeben. Die IR-Spektren wurden mit dem Perkin Elmer 297-Spektrometer aufgenommen. Die relativen Molmassen wurden osmometrisch bestimmt.

Ausgangsmaterialien: $1a^{21}$, $1b^{6}$, $(Ph_3P)_2MO_2$, M = Pd, Pt^{22} , $(Ph_3P)_2MCl_2$, M = Pt(cis), $Pd(trans)^{23}$, 6^{24} .

Bis(tert-butylamido)thiophosphorsäure-O-trimethylsilylester (2a): Zu einer eisgekühlten Lösung von 5.0 g (17.96 mmol) 1a in 30 ml Ether werden unter kräftigem Rühren portionsweise 323.2 mg (17.96 mmol) Wasser gegeben und die Lösung 20 min weitergerührt (Eisbad entfernen). Das Lösungsmittel wird im Ölpumpenvak. entfernt und der schwach gelbe, kristalline Rückstand aus Ether umkristallisiert (abkühlen bis ca. -20° C, zweimal mit je 5 ml kaltem (-78° C) Pentan die Kristalle waschen und 4 h bei 0.01 Torr trocknen). Ausb. 4.8 g (16.2 mmol, 90%). Die Kristalle können auch durch Sublimation gereinigt werden.

C11H29N2OPSSi (296.5) Ber. C 44.56 H 9.85 N 9.44

Gef. C 44.44 H 9.58 N 9.50 Molmasse 298

Bis(tert-butylamido)selenophosphorsäure-O-trimethylsilylester (2b): 5.0 g (15.37 mmol) 1b, 30 ml Ether, 276.8 mg (15.37 mmol) Wasser. Versuchsdurchführung wie bei 2a. Nach dem Abziehen des Lösungsmittels wird der ölig-kristalline Rückstand bei -78 °C dreimal mit je 5 ml Pentan gewaschen und 4 h bei 0.01 Torr getrocknet. Ausb. 4.6 g (13.4 mmol, 87%). Übelriechende, farblose Kristalle, die – auch unter Argon aufbewahrt – nur begrenzt haltbar sind (Zerfall unter Abscheidung von rotem Selen).

C₁₁H₂₉N₂OPSeSi (343.4) Ber. C 38.48 H 8.51 N 8.16 Gef. C 38.30 H 8.41 N 8.10 Molmasse 338

Natrium-bis(tert-butylamido)chalkogenphosphat 3a(S), 3b(Se): Da 3a, b auch im festen Zustand unter Argon einer merklichen Zersetzung unterliegen, wurden die Natriumsalze erst unmittelbar vor Gebrauch hergestellt (max. 5% Verunreinigung (³¹P-NMR-Kontrolle)).

Zu einer Suspension von 60 mg (1.5 mmol) NaOH in 10 ml (3a) bzw. 15 ml (3b) Acetonitril werden bei Raumtemp. möglichst rasch 1.5 mmol (444.7 mg 2a, 515.0 mg 2b) 2 gegeben. Bereits nach wenigen Sekunden entsteht eine hochviskose Lösung, aus der in wenigen Minuten ein farbloser, voluminöser Niederschlag ausfällt. Die Suspension wird 20 min (3a) bzw. 10 min (3b) kräftig gerührt (gute Durchmischung ist notwendig). Das Lösungsmittel wird im Ölpumpenvak. entfernt, der Rückstand zweimal mit ca. 5 ml Pentan gewaschen und 2 h bei 0.01 Torr getrocknet. Ausb. 360 mg 3a (1.46 mmol, 97%), 412 mg 3b (1.41 mmol, 95%).

3a: $C_8H_{20}N_2NaOPS$ (246.3)Ber.C 39.01H 8.18N 11.37Gef.C 36.40H 7.74N 11.103b: $C_8H_{20}N_2NaOPSe$ (293.2)Ber.C 32.77H 6.87N 7.55Gef.C 29.20H 6.18N 8.60^{a)}

cis-Bis[N,N'-di(tert-butyl)diamidothiophosphato-S]bis(triphenylphosphan)platin(II) (4a): Eine Suspension von 360 mg (1.46 mmol) 3a in 20 ml CH₃CN wird in einem Zentrifugenglas bei Raumtemp. mit 577 mg (0.73 mmol) cis- $[(Ph_3P)_2PtCl_2]$ versetzt, wobei die Farbe sofort von Farblos nach Gelb umschlägt. Nach 2 h Weiterrühren wird zentrifugiert, die überstehende Lösung abgetrennt, der Niederschlag (NaCl) mit 5 ml Acetonitril gewaschen. Zentrifugat und Waschlösung werden vereinigt, das Lösungsmittel im Ölpumpenvak. entfernt, der Rückstand zweimal mit je 5 ml Pentan gewaschen und 2 h bei 0.01 Torr getrocknet. Ausb. 621 mg (0.53 mmol, 73%).

> $C_{52}H_{70}N_4O_2P_4PtS_2$ (1166.3) Ber. C 53.55 H 6.05 N 4.83 Gef. C 52.30 H 5.96 N 4.50

^{a)} Gewichtszunahme beim Abfüllen der Probe.

Umsetzung von $(Ph_3P)_2PtO_2$ mit **2a** zu **4a**: In einem Schlenk-Rohr werden bei Raumtemp. 564 mg (0.75 mmol) $(Ph_3P)_2PtO_2$ in 20 ml CH₃CN suspendiert und 444 mg (1.5 mmol) **2a** zugesetzt. Es wird solange gerührt (ca. 10 min), bis eine fast klare, gelbe Lösung entsteht. Nach Abziehen des Lösungsmittels sowie des entstandenen Bis(trimethylsilyl)peroxids im Ölpumpenvak. verbleibt ein gelbes Pulver, das zweimal mit 5 ml Pentan bei -20°C gewaschen und 4 h bei 0.01 Torr getrocknet wird. Ausb. 599 mg (0.6 mmol, 80%). Die physikalischen Eigenschaften stimmen mit denen des aus **3a** gewonnenen Produktes überein.

cis-Bis[N,N'-di(tert-butyl)diamidoselenophosphato-Se]bis(triphenylphosphan)platin(II) (4b): 412 mg (1.4 mmol) 3b, 20 ml CH₃CN, 555 mg (0.7 mmol) cis-[(Ph₃P)₂PtCl₂]. Versuchsdurchführung und Aufarbeitung wie bei 4a. Ausb. 575 mg (0.46 mmol, 65%).

4b kann nicht in reiner Form aus (Ph₃P)₂PtO₂ und 2b hergestellt werden.

trans-[N,N'-Di(tert-butyl)diamidothiophosphato-S][N,N'-di(tert-butyl)diamidothiophosphato-N,S](triphenylphosphan)platin(II) (5a): Zu 600 mg (0.61 mmol) 4a in 15 ml Toluol gibt man bei Raumtemp. 17.3 mg (0.54 mmol) S₈ und rührt 24 h weiter. Nach Abziehen des Lösungsmittels im Ölpumpenvak. wird der Rückstand in möglichst wenig Dichlormethan aufgenommen und die orange Lösung säulenchromatographisch gereinigt (Säule: 1 × 35 cm, Kieselgel der Korngröße 0.06-0.25 µm), Ether als Laufmittel, Fließgeschwindigkeit ca. 2 ml/min. Der ersten, schwach braunen Phase, welche hauptsächlich aus Ph₃PS besteht, folgt eine intensiv gelbe Produktfraktion, deren Lösungsmittel im Ölpumpenvak. entfernt wird. Das gelbe Kristallpulver (es kann aus heißem CH₃CN umkristallisiert werden) wird mit 10 ml Pentan gewaschen und 4 h bei 0.01 Torr getrocknet. Ausb. 354 mg (0.39 mmol, 76%).

 $C_{34}H_{55}N_4O_2P_3PtS_2$ (904.0) Ber. C 45.18 H 6.13 N 6.20 Gef. C 45.10 H 5.96 N 6.30 Molmasse 850

trans-[N,N'-Di(tert-butyl)diamidoselenophosphato-Se][N,N'-di(tert-butyl)diamidoselenophosphato- $N,Se_](triphenylphosphan)$ platin(II) (**5b**): 700 mg (0.55 mmol) **4b**, 15 ml Toluol, 18.7 mg (0.578 mmol) S₈. Versuchsdurchführung und Aufarbeitung wie bei **5a**.

 $\begin{array}{cccc} C_{34}H_{55}N_4O_2P_3PtSe_2 \ (997.8) & \mbox{Ber.} \ C \ 40.93 \ H \ 5.50 \ N \ 5.62 \\ & \mbox{Gef.} \ C \ 40.60 \ H \ 5.36 \ N \ 5.60 \ \ Molmasse 980 \\ \end{array}$

trans-[N,N'-Di(tert-butyl)diamidothiophosphato-S][N,N'-di(tert-butyl)diamidothiophosphato-N,S](triphenylphosphan)palladium(II) (5c)

Aus 3a und trans- $[(Ph_3P)_2PdCl_2]$: 400 mg (1.62 mmol) 3a werden in 15 ml CH₃CN suspendiert und mit 570 mg (0.81 mmol) trans- $[(Ph_3P)_2PdCl_2]$ 2 h bei Raumtemp. gerührt. Aufarbeitung wie bei 5a. Die 2. Säulenfraktion ist orange. Ausb. 383 mg (0.47 mmol, 58%).

Aus **2a** und $(Ph_3P)_2PdO_2$: Eine Suspension von 400 mg (0.6 mmol) $(Ph_3P)_2PdO_2$ in 10 ml CH₃CN versetzt man bei -30 °C mit 358 mg (1.2 mmol) **2a** und läßt die Reaktionslösung unter Rühren auf Raumtemp. auftauen (ca. 20 min). Aufarbeitung wie bei **5a**. Ausb. 308 mg (0.38 mmol, 63%).

Aus 7/8 und Ph_3P : 200 mg eines Gemisches aus 7 und 8 sowie 94.3 mg (0.36 mmol) Ph_3P werden in 5 ml Ether 4 h bei Raumtemp. gerührt. Nach Abziehen des Lösungsmittels wird der Rückstand 2 h bei 0.01 Torr getrocknet. Ausb. 290 mg (0.36 mmol, 99%).

 $\begin{array}{c} C_{34}H_{55}N_4O_2P_3PdS_2 \ (815.3) & \mbox{Ber. C} 50.08 \ H \ 6.79 \ N \ 6.87 \\ & \mbox{Gef. C} 49.90 \ H \ 6.64 \ N \ 7.00 \ \ \mbox{Molmasse} 800 \\ \end{array}$

trans-[N,N'-Di(tert-butyl)diamidoselenophosphato-Se][N,N'-di(tert-butyl)diamidoselenophosphato-N,Se](triphenylphosphan)palladium(II) (5d): 350 mg (1.2 mmol) 3b, 320 mg (0.6 mmol) trans-[(Ph₃P)₂PdCl₂], 15 ml CH₃CN. Versuchsdurchführung und Aufarbeitung analog 5a. Tiefrote Produktfraktion. Ausb. 375 mg (0.42 mmol, 70%).

 $C_{34}H_{55}N_4O_2P_3PdSe_2$ (909.1) Ber. C 44.90 H 6.05 N 6.16 Gef. C 44.90 H 6.04 N 6.20 Molmasse 916

Gleichgewichtsgemisch der Palladium-Mehrkernkomplexe $(PdL_2)_n$, $L = SP(O)(NHtBu)_2$, 7 (n = 3) und 8 (n = 2): 500 mg (0.2 mmol) 3a werden bei Raumtemp. mit 263 mg (0.1 mmol) trans-[(CH₃CN)₂PdCl₂] (6) in 15 ml CH₃CN 2 h gerührt. Nach Abziehen des Lösungsmittels wird der Rückstand in 5 ml Dichlormethan gelöst und zentrifugiert. Das abpipettierte Zentrifugat wird zur Trockene im Ölpumpenvak. eingeengt, der Rückstand (orange) mit 5 ml Pentan gewaschen und 4 h bei 0.01 Torr getrocknet. Aus heißem CH₃CN kristallisiert reines 7 in Form tiefroter Kristalle, welche in Lösung erneut ein Gleichgewicht mit 8 ausbilden. Ausb. 439 mg (0.79 mmol, 78%).

 $\begin{array}{rrrr} C_{48}H_{120}N_{12}O_6P_6Pd_3S_6 \ (1659.0) & \mbox{Ber.} \ C \ 34.75 \ H \ 7.29 \ N \ 10.13 \\ & \mbox{Gef.} \ C \ 34.60 \ H \ 7.10 \ N \ 10.10 \end{array}$

Die quantitative Umsetzung von 7/8 mit Ph₃P zu 5c ist bei 5c (3. Weg) beschrieben.

Röntgenstrukturanalysen

5a, $C_{34}H_{55}N_4O_2P_3PtS_2$, Molmasse 904.0, Syntex P2₁-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator. Kristallgröße: $0.31 \times 0.17 \times 0.12$ mm. a = 1685.9(2), b = 2383.3(4), c = 1054.9(2) pm, $\beta = 102.77(3)^\circ$, $V = 4056(1) \cdot 10^6$ pm³, monoklin, Raumgruppe P2₁/n, Z = 4, $D_c = 1.47$ g/cm³, $\mu = 35.5$ cm⁻¹, ω -scan. Datensammlung von 6337 unabhängigen Intensitäten bei 20°C (3° $\leq 2\Theta \leq 45^\circ$), davon 3577 beobachtet ($F_o^2 \geq 2.5\sigma$ (F_o^2)). Es wurde eine empirische Absorptionskorrektur (ψ -scan, max. Trans.: 65.7%, min. Trans.: 33.8%) durchgeführt. Strukturlösung durch Patterson-Synthese und anschließende Differenz-Fourier-Synthesen. Strukturverfeinerung in der geblockten Vollmatrixmethode (SHELX-76). Die Positionen der Wasserstoffatome wurden geometrisch berechnet (C-H-Abstand 108 pm, H-C-H-Winkel 109.5°). R = 0.056, $R_w = 0.048$, $w = k \cdot (\sigma^2(F_o) + 0.0002 F_o^2)^{-1}$, 259 Parameter. Maximale Restelektronendichte 1.26 $e/Å^3$.

5b, $C_{34}H_{55}N_4O_2P_3PtSe_2$, Molmasse 997.8, Enraf-Nonius CAD 4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator. Kristallgröße 0.18 × 0.10 × 0.36 mm. a = 1684.9(3), b = 2360.1(6), c = 1056.6(5) pm, $\beta = 101.72(2)^\circ$, $V = 4114(1) \cdot 10^6$ pm³, monoklin, Raumgruppe P_{21}/n , Z = 4, $D_c = 1.61$ g/cm³, $\mu = 53.4$ cm⁻¹, ω -scan. Datensammlung von 5441 unabhängigen Intensitäten bei 20 °C (4° $\leq 2\Theta \leq 45^\circ$), davon 3977 beobachtet ($F_o^2 \geq 2.5 \sigma$ (F_o^2)). Es wurde eine empirische Absorptionskorrektur (ψ -scan, max. Trans.: 33.5%, min. Trans.: 26.8%) durchgeführt. Strukturlösung durch Patterson-Synthese und anschlie-Bende Differenz-Fourier-Synthesen. Strukturverfeinerung nach der Methode der kleinsten Fehlerquadrate mit SDP-Programmsystem auf einem PDP 11/23-Rechner. Die Wasserstoffatome wurden nicht berücksichtigt. R = 0.068, $R_w = 0.069$, $w = k(\sigma^2(F_o) + 0.0004 F_o^2)^{-1}$, 216 Parameter. Maximale Restelektronendichte 4.39 $e/Å^3$ in der Nähe des Pt-Atoms (Abstand 133 pm) lokalisiert.

7, $C_{48}H_{120}N_{12}O_6P_6Pd_3S_6$, Molmasse 1659.0, Enraf-Nonius CAD 4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator. Kristallgröße: 0.18 × 0.18 × 0.10 mm. a = 1557.0(2), b = 5399.5(3), c = 1917.2(4) pm, $V = 1.6117(4) \cdot 10^{10}$ pm³, orthorhombisch, Raumgruppe Fdd 2, Z = 8, $D_c = 1.37$ g/cm³, $\mu = 9.65$ cm⁻¹, ω -scan. Datensammlung von 4605 unabhängigen Intensitäten bei 20 °C (4° $\leq 2\Theta \leq 55^{\circ}$), davon 3907 beobachtet ($F_o^2 \geq 2.0 \sigma (F^2)$). Es wurde eine empirische Absorptionskorrektur (max. Trans.: 91.1%, min. Trans.: 84.1%) durchgeführt. Strukturlösung durch Patterson-Synthese und anschließende Differenz-Fourier-Synthesen. Strukturverfeinerung nach der Methode der kleinsten Fehlerquadrate mit SDP-Programmsystem. Wasserstoffatome wurden nicht berücksichtigt. R = 0.047, $R_w = 0.046$, $w = k(\sigma^2(F_0) + 0.00005 F_0^2)^{-1}$, 370 Parameter. Maximale Restelektronendichte $0.55 \ e/Å^3$.

CAS-Registry-Nummern

1a: 53973-90-3 / 1b: 53787-02-3 / 2a: 102870-32-6 / 2b: 102870-34-8 / 3a: 102870-33-7 / **3b**: 102870-35-9 / **4a**: 102920-75-2 / **4b**: 102920-78-5 / **5a**: 102920-76-3 / **5b**: 102920-79-6 / **5c**: 102920-80-9 / **5d**: 102920-81-0 / **6**: 21264-30-2 / 7: 102920-77-4 / **8**: 102940-15-8 / *cis*-[(Ph₃P)₂PtCl₂]: 15604-36-1 / trans-[(Ph₃P)₂PdCl₂]: 28966-81-6 / (Ph₃P)₂PtO₂: 29894-57-3 / (Ph₃P)₂PdO₂: 29933-60-6 / Ph₃P: 603-35-0

- ²⁾ Neueste Übersichten: ^{2a)} I. Haiduc, Rev. Inorg. Chem. 3, 353 (1981). ^{2b)} B. J. Mc Cormick, R. Bereman und D. Baird, Coord. Chem. Rev. 54, 99 (1984), und dort zit. Literatur.
- ³⁾ Z. B. Methoden der Organischen Chemie (Houben-Weyl), 4. Aufl., Bd. 12/2 (1964), sowie
- ¹⁰ Z. B. Glidener and Organischen Chemic (*Houben-Weyl*), 4. Aun., Bd. 12/2 (1904), sowie Bd. E 2 (Organische Phosphorverbindungen II), S. 759, Thieme Verlag, Stuttgart 1982.
 ⁴⁰ O. J. Scherer, N. T. Kulbach und W. Gläßel, Z. Naturforsch., Teil B 33, 652 (1978).
 ⁵¹ R. Ahlrichs und H. Schiffer, J. Am. Chem. Soc. 107, 6494 (1985); siehe auch: W. W. Schoeller und C. Lerch, Inorg. Chem. 25, 576 (1986).
 ⁶¹ O. J. Scherer und N. Kuhn, J. Organomet. Chem. 78, C17 (1974).
 ⁷¹ Z. B. G. Clidenell and E. L. Leich L. Chem. 78, C17 (1974).
- ⁷ Z. B. C. Glidewell und E. J. Leslie, J. Chem. Soc., Dalton Trans. 1977, 527.
- ⁸⁾ K. Forstinger, Dissertation, Univ. Kaiserslautern 1985.
 ⁹⁾ G. Wilke, H. Schott und P. Heimbach, Angew. Chem. 79, 62 (1967); Angew. Chem., Int. Ed. Engl. 6, 92 (1967).
- ¹⁰ D. Mootz, W. Look, G. Saßmannshausen und J. Goldmann, Angew. Chem. 79, 981 (1967); Angew. Chem., Int. Ed. Engl. 6, 960 (1967); D. Mootz und J. Goldmann, Acta Crystallogr., Sect. B 25, 1256 (1969). ¹¹⁾ R. Schierl, U. Nagel und W. Beck, Z. Naturforsch., Teil B 39, 649 (1984).
- ¹²⁾ J. R. Wasson, G. M. Woltermann und H. J. Stoklosa, Fortschr. Chem. Forsch. 35, 65 (1973). ¹³⁾ R. Colton und T. A. Stephenson, Polyhedron 3, 231 (1984).

- Chem. Commun. 1981, 698.
- ¹⁶⁾ D. E. C. Corbridge, The Structural Chemistry of Phosphorus, S. 228, Elsevier, New York 1974.
- Crystallogr., Sect. B 24, 1623 (1968). ¹⁸⁾ ¹⁸⁰ D. C. Jicha und D. H. Busch, Inorg. Chem. 1, 872, 878 (1962). – ^{18b)} C. H. Wei und
- L. F. Dahl, Inorg. Chem. 9, 1878 (1970).
- ¹⁹⁾ D. M. Roundhill, Inorg. Chem. 19, 557 (1980). ²⁰⁾ ^{20a} J. P. Fackler jr. und Wm. J. Zegarski, J. Am. Chem. Soc. 95, 8566 (1973). ^{20b} E. M. Mc Partlin und N. C. Stephenson, Acta Crystallogr., Sect. B 25, 1659 (1969).
- ²¹⁾ O. J. Scherer und N. Kuhn, Angew. Chem. 86, 899 (1974); Angew. Chem., Int. Ed. Engl. 13, 811 (1974).
- ²²⁾ C. J. Nyman, C. E. Wymore und G. Wilkinson, J. Chem. Soc. A 1968, 561.
- ²³⁾ F. R. Hartley, The Chemistry of Platinum and Palladium, Applied Science Publishers Ltd., London 1973.
- ²⁴⁾ B. B. Wayland und R. F. Schramm, Inorg. Chem. 8, 971 (1969).

[64/86]

¹⁾ XXVI. Mitteil.: O. J. Scherer, R. Konrad, E. Guggolz und M. L. Ziegler, Chem. Ber. 118, 1 (1985).